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The motion of two equal spherical bubbles moving along their line of centres in a 
viscous liquid is studied numerically in bispherical coordinates. The unsteady 
Navier-Stokes equations are solved using a mixed spectral/finite-difference scheme for 
Reynolds numbers up to 200. Free-slip conditions at the bubble surfaces are imposed, 
while the normal stress condition is replaced by the sphericity constraint under the 
assumption of small Weber number. The vorticity shed by the upstream bubble affects 
the drag on the trailing bubble in a very complex fashion that appears to be quite 
beyond the power of existing asymptotic analyses. The separation between two equal 
bubbles rising in line under the action of buoyancy is predicted to reach an equilibrium 
value dependent on the Reynolds number. This result is at variance with experiment. 
The explanation offered of this difference casts further doubt on the feasibility of a 
simplified simulation of bubbly liquid dynamics. 

1. Introduction 
In addition to its intrinsic fluid dynamic interest, the study of the interaction of two 

or more bodies in a flow is a necessary step in the derivation of averaged equations for 
multi-phase flows. Classic examples are the papers by Batchelor (1972) and Batchelor 
& Green (1 972) in which results for two spheres at vanishing Reynolds number Re were 
used to study the sedimentation and effective viscosity of suspensions. Many other 
examples can be found in the literature. Here we are interested in the case of two 
bubbles at large Reynolds numbers where the interaction is mostly inertial. 

For a dispersion of gas bubbles in a small-viscosity liquid, the vanishing of the shear 
stress at the bubble surfaces has the consequence that viscous effects only provide a 
correction of order Re-'/* to the basic potential flow. One may therefore try to 
construct a basically inviscid theory of bubbly liquids in which viscous effects are 
incorporated in an approximate way. Recent examples may be found in studies by Kok 
(1989), Sangani & Didwania (1993a, b), Kumaran & Koch (1993a, b), and van 
Wijngaarden (1993), in which the bubbles are treated as rigid stress-free spheres. For 
liquids like water and normal gravity, the bubble size range in which distortion of the 
spherical shape is small, of the order of 1 mm. Sangani & Didwania (1993b) included 
viscous effects by means of a dissipation function by setting, for the viscous force F; 
acting on bubble a, 

where Ed is the instantaneous dissipation function approximately calculated from the 
potential flow and the gradient is taken with respect to the velocity of bubble a. Since 
Ed is bilinear in the bubble velocities, (1.1) is equivalent to a representation of the type 

Ft = aVvaEd, (1.1) 

Ft = A, Va, 
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where A, is a matrix dependent only on the bubbles' configuration (Sangani & 
Didwania 1993b). For a single stress-free sphere at large Re it is well-known that this 
method gives the correct result in steady motion, namely 

F, = 127rpa V, (1.3) 

as first found by Levich (1962). Here p is the liquid viscosity and a the sphere radius. 
The validity of this expression for unsteady motion is not obvious as, in principle, one 
might expect that the diffusive nature of viscous processes would introduce history- 
dependent terms in the drag law. As shown by Prosperetti (1977) for small-amplitude 
motion, and more recently by Kang & Leal (1988) for finite displacements, Levich's 
relation does nevertheless continue to hold with an accuracy of O(Re-'la). Based on the 
unsteady boundary-layer approximation, Chen (1974) reached a similar conclusion. 
More recently, Mei & Klausner (1992) studied the same problem in the frequency 
domain with the same results. In the studies of Kumaran & Koch and van 
Wijngaarden, (1.3) is used directly disregarding the effects of bubble-bubble 
interactions. 

The validity of either approximation in the case of two or more bubbles is, however, 
unknown and this motivates the present study. At high Reynolds numbers the 
boundary layer is thin and the interaction is therefore maximized when a bubble is in 
the wake of another one. For this reason, and because the resulting axial symmetry 
considerably simplifies the analysis, we study two bubbles in motion in the direction of 
their line of centres. By the use of bispherical coordinates the physical domain is 
mapped onto a simple computational domain in which the vorticity/stream-function 
equations are solved by a mixed spectral and finite-difference method. We study the 
cases of motion with both imposed velocities and imposed forces, such as buoyancy. 

Our results imply that the high-Reynolds-number limit in which the simplified 
asymptotic results hold is very high indeed, and possibly so high as to be of very limited 
practical interest. At Reynolds numbers as large as 200, corresponding approximately 
to a 0.8 mm diameter bubble rising in water, viscous effects beyond the Levich result 
are still quite significant and bubble-bubble interactions very strong. As a consequence, 
the theory of Harper (1970) for the rise of a chain of bubbles at large Re does not seem 
to have a useful range of applicability. 

Whle numerical studies are available of the motion of one, two, or more no-slip 
rigid spheres (Tal, Lee & Sirignano 1984; Ramahandran et a/. 1991), the problem 
studied here has not been considered previously other than in the paper by Harper 
(1970) mentioned before. The literature on single bubbles, on the other hand, is richer. 
In addition to the papers mentioned, one should include the first fully numerical study 
of a spherical bubble by Brabston & Keller (1975). Ryskin & Leal (1984a, b) 
considered the steady problem allowing for the deformation of the bubble and 
computed the drag coefficient as a function of the Reynolds and Weber numbers. 

2. Formulation 
We consider an incompressible viscous fluid occupying the domain exterior to two 

equal spheres of radius a translating in the direction of their line of centres. This is 
taken as the x-axis and is oriented from bubble 2 to bubble 1. If 5, V, denote the 
velocities of the spheres, the distance d between their centres changes at the rate 

d =  q-v,, (2.1) 
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and the velocity of the midpoint of the segments joining the centres is 
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B=i(V,+v,). (2.2) 
We take this point as the origin of a cylindrical coordinate system (r,  x,  $) and define 
bispherical coordinates (p, q, $) by 

where 

c sin q c sinh Go p) r =  , x =  
cash k0 p) - cos 7 cash b0 p) - cos 7 ' 

The angular variable is the same in both systems. The metric coefficients are 

Owing to the motion of the bubbles, the coordinate transformation depends on time. 
In particular, 

d 2c 
c = -(&- v,), / io  = -, 4c d 

and also, if we denote by ,k, q the time derivatives of p and 7 at constant field point x, 

cpo,k = i . s inh~,p)cos~-~cosh(p,p)cosq-  l]-cp,kO, 1 
(2.8) 

The presence of axial symmetry suggests the use of a formulation in terms of the 
vorticity and the vector potential e y? or stream function h f $ .  The two differ by the 
explicit inclusion of the metric coedcient in the latter quantity (see e.g. Gresho 1991). 
For the case of a single bubble in potential flow, in cylindrical coordinates, the stream 
function is given by fur2 while the vector potential equals fur. The Fourier sine 
expansion of the vector potential thus only has one non-zero term, while that of the 
stream function has infinitely many terms. Our numerical evidence shows that this 
advantage of the vector potential carries over to the two-bubble case that we consider 
in the sense that the Fourier series for 6 is found to converge more slowly than that 
for @. We therefore write 

cq = i. cosh (p, p) sin q - ysinh b0 p) sin q.  1 

= v x (@e& (2.9) 

so that the vorticity 
is given by 

we) = V x u, 

we) = V x V x ($e,). 

(2.10) 
(2.1 1) 

Accounting for the time dependence of the coordinate system the vorticity equation 
is 

aw ao aw 2 - +/i - + 4 - + (u - V) w = w(e+- V) u + - V2w. 
at ap a7 Re 

(2.12) 

Here and in the following we use quantities rendered non-dimensional with respect to 
the length a, velocity V, and pressure pY2. The choice of the fundamental velocity V 
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is problem-dependent and will be specified below for the different cases. The Reynolds 
number is based on the bubble diameter and is defined by 

with v the kinematic viscosity. 

the Appendix. Here we use the more synthetic notation 

Re = 2aV/v, (2.13) 

The explicit expressions for (2.1 1) and (2.12) in bispherical coordinates are given in 

64j$-2-4(q)w = 0, (2.14) 

and A(7) Re + (q + Re g) w = Re N ( w ,  @), (2.15) 

respectively, where A = 2c2( 1 -cos 2q), g ,  g are linear operators, and N ( w ,  +) 
denotes the bilinear term. 

As explained in the Introduction our aim is to model bubbles and therefore we 
impose a condition of vanishing tangential stress at the surface of the spheres 

c x na Is= = 0, a = 1,2, (2.16) 

which, in terms of +, w, may be compactly expressed as 

w l s 0  = 9"($), a = 1,2, (2.17) 

With the neglect of the deformation of the bubbles, the kinematic boundary 

(u- V")-n"l,. = 0, a = 1,2, (2.18) 

where F 1 v Z  are linear operators given in the Appendix. 

condition is 

which, in terms of @, may be written as 

c sin 7 @Is. = -;v= , a = 1,2. 
COShpo -COS 7 

(2.19) 

Since we are going to neglect the gas inertia, the forces acting on each bubble must 
balance so that we have the integral constraint on the normal stresses 

(2.20) 

where F, is the non-hydrodynamic force (e.g. buoyancy) acting on bubble a. 
To impose these conditions the pressure on the bubble surfaces is needed. After the 

vorticity and vector potential have been calculated, this quantity can be obtained by 
integrating the 7-component of the momentum equation along the bubble surfaces as 
done in Ryskin & Leal (1982). It is convenient to use a local spherical coordinate 
system (w, 8, #) centred at the centre of each bubble with 0 measured from the direction 
of x positive. The dimensionless pressure is given by 

where the index 0 denotes the stagnation-point value. 
In general the effect of viscosity on the hydrodynamic force on a body is due not only 

to the viscous stress at the surface and to a viscous modification of the pressure, but 
also to a change of the entire flow pattern. Because of this circumstance, the 
identification of the 'viscous component' of the force is in general a somewhat ill- 
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defined question. However, at large Reynolds numbers and with free-slip boundary 
conditions, the flow structure in the inviscid and viscous cases is very similar (in 
particular, there is no separation) so that it is reasonable to dejine 

e = F--potcntla2. (2.22) 

Here F is the x-component of the force given by (2.20) and Fpotenttal is calculated by 
solving (2.14) with w = 0 and using (2. lo), also with w = 0. This latter calculation could 
of course be done analytically. However, the final result is quite cumbersome and in the 
end it proved more practical to proceed numerically as the same code can be used. The 
drag coefficient discussed below is defined by 

L c, = -4. 
R 

(2.23) 

For the time-dependent problems to be considered below we take the initial 

wo1,r, 0) = 0. (2.24) 

This would be applicable, for example, to an impulsively started motion. A discussion 
of initial conditions of this type is given by Gresho (1991). 

We will first solve the problem in which the velocity of the bubbles is precribed ($3). 
The procedure will then be extended to study the motion of the bubbles under the 
action of prescribed forces ($5). 

condition to correspond to purely potential flow, 

3. Solution procedure 

subject to the boundary conditions (2.17) and (2.19). 

direction truncated at some finite number of terms N :  

For prescribed bubble velocities, the equations to be solved are (2.14) and (2.15) 

To solve the field equations w and $ are expanded in a Fourier sine series in the 7- 

Upon substitution into (2.14) and (2.15) and application of the standard Garlerkin 
method (see e.g. Canuto et al. 1988) we find 

N 

(L;,2$2-2Ak,142) = 0, k = 1,2,... , N ,  (3.2) 
2-1 

where Nk@) indicates a convolution product and Ak, a matrix. The operators Li,2, Li, 
involve differentiation with respect to p. The explicit expressions for all these quantities 
are given in the Appendix. The boundary conditions must also be expanded in a 
Fourier sine series. This can be done either numerically by using the FFT, or 
analytically as described in the Appendix. 

The use of a spectral expansion in the p-direction, although of course possible, is 
rather involved owing to the presence of the metric coefficients. We choose instead a 
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finite-difference approach which has the advantage of leading to a block tri-diagonal 
matrix with blocks of dimension N. All the p-derivatives are discretized using standard 
central differences. 

Time integration is carried out by the backward Euler sheme with iterative solution 
of the implicit equations. At each time step the algebraic problem to be solved has the 
structure 

N 

~ ~ L : , , ; i , l ~ ~ ~ 1 = 2 C , A , , , B t : ' ,  k =  1,2 ,..., N,  i =  1,2 ,..., M ,  (3.4) 
5-1 1-1 1-1 

A ,  1 
M N  

[Re 5-1 1-1 2-1 At di, 4- (L;, ;i, + Re L:, ;l, 1 ) ]  &zil = Re NtL' + Re - ;If 1, 

k = 1 , 2  ,..., N ,  i = 1 , 2  ,..., M. (3.5) 

The matrices LZkil, 2, L:,,;,, arise from the discretization of the differential operators 
Lk, 2, LE, and N t Y  depends on &,+,I, &If;'. Detailed expressions for all these quantities 
are given in the Appendix. 

The iterative procedure is as follows. We first solve (3.4) subject to the kinematic 
boundary condition (2.19) using, on the right-hand side, the most recent value of the 
vorticity distribution. With the resulting updated value of $, the vorticity equation 
(3.5) is solved subject to the dynamic boundary condition (2.16). The nonlinear term 
Ni,, is calculated using a 2N-point FFT from the results of the previous iteration. Each 
iteration requires two block-tridiagonal matrix inversions. The procedure is continued 
until convergence, which is monitored through the computed hydrodynamic forces. In 
the early stages of this work we kept track of the maximum norm of the difference 
between the actual field values at each iteration, but we found that the force criterion 
is simpler and just as accurate. The iterations were stopped when successive force 
values differed by about lo-'. 

After each iteration, the pressure on the bubble surface is obtained by integrating the 
7-component of the momentum equation according to (2.21), and the drag is then 
found by integrating the normal stress around the bubbles. In this calculation 
analytical expressions (given in the Appendix) are used to express in (w, 8)-coordinates 
the velocity components given in terms of &, q)-coordinates. 

The number N of terms in the spectral expansion and M of nodes is dependent on 
both the Reynolds number and the separation between the bubbles. The Reynolds- 
number dependence arises from the boundary-layer-type behaviour of the solution, 
while the separation dependence is due to the grid clustering occurring in bispherical 
coordinates shown in figure 1. When the bubbles are very close more nodes are 
required to ensure adequate resolution ahead of, and behind, the bubble pair. In 
addition there is a dependence on the duration of the simulation as the wake becomes 
very long for large times, even though the drag coefficients have reached a steady value. 
In the calculation we used between 32 and 64 terms in the Fourier sine expansion for 
both o and $ and 300 finite-difference points. Standard convergence tests showed that, 
for the present results, this resolution was adequate for Re up to 200 and centre-to- 
centre separations of three times the radius or larger. Since the stream function and 
drag coefficients are obtained from the vorticity essentially by integration, one expects 
that numerical inaccuracies would first manifest themselves in the results for w. Indeed, 
we found that, when M ,  N are too small, the calculated vorticity field presents 
oscillations in the nearly irrotational region, while the other quantities are nearly 
unchanged. 
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FIGURE 1. Portion of the computational grid for a bubble separation 8 times the radius. The actual 
computational domain is the entire space. Typically between 10 and 25 as many grid lines are used 
in the computations. 

To test the accuracy of the computation, we let the separation between the bubbles 
be very large (say 100 radii) so that their interaction can be neglected. The drag 
coefficients calculated for this case were within 2.5 % of the results for single spherical 
bubbles of Ryskin & Leal (1984~). 

4. Results - prescribed velocities 
In this section, we will present some results for the case in which the bubbles move 

with equal imposed velocity V. Although this is a somewhat artificial situation, it is 
useful to illustrate the development of the flow field and the mechanisms influencing the 
drag forces. 

We consider the steady case first. Figures 2(a)  and 2(b) show the calculated steady 
drag (dashed lines) on the leading and trailing bubble, respectively, as a function of the 
separation d between the centres for several Reynolds numbers. The solid line in these 
figures is the dissipation-function prediction according to (1.1) and shows a much 
smaller range of variation than the full viscous results indicated by the dashed lines and 
corresponding, in ascending order, to Re = 20,50, 100,200. The reason is that the drag 
calculated from the dissipation function method depends on d only through the 
dependence of the potential on this quantity. Asymptotically this dependence is 
proportional to ( ~ / d ) ~  and is therefore relatively weak even at close separations. In a 
viscous fluid, on the other hand, the wake and other interaction mechanisms have a 
considerably longer range and produce very strong effects, as these figures demonstrate. 
Furthermore, for two bubbles moving with the same velocity, the dissipation method 
gives identical drags due to the time-reversal invariance of potential flow, while the fact 
that the trailing bubble is immersed in the wake of the leading one leads to markedly 
different results at finite Reynolds numbers. In the case of the leading bubble, the drag 
increase with separation predicted by the dissipation-function method occurs only for 
sufficiently large Reynolds numbers and separations. For smaller separations, the drag 
is actually a decreasing function of d. This feature may be explained by noting that, for 
an isolated bubble, the wake is thin so that the pressure recovers substantially over the 
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FIGURE 2. Steady drag on (a) the leading bubble, and (b) the trailing bubble, as a function of the 
centre-to-centre separation. The dashed lines, in ascending order, are for Re = 20, 50, 100 and 200. 
The solid line is the dissipation method prediction. 
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FIGURE 3. Correction factor F to the dissipation function drag defined in (4.1) as a function of the 
centre-to-centre distance for several values of the Reynolds number. The solid lines are for the leading 
bubble and the dashed lines for the trailing bubble. A, Re = 200; 0, Re = 100; 0, Re = 50. 

rear hemisphere. The proximity of a second bubble prevents this recovery and hence 
causes the drag to increase. The drag on the second bubble, on the other hand, 
increases monotonically due to the shielding effect of the leading bubble at small 
separations. This strong rise at small d is sufficient to offset the decline on the first 
bubble so that the average drag is monotonic. 

It is well known that, for a single bubble, a better value than Levich’s for the drag 
coefficient is given by (Moore 1963) 

c -%(l-&), - Re (4.1) 

with F m  2.21 1. We have tried to fit the numerical results of figure 2(a) with an 
expression of this type and found excellent results for Re 2 50. From such a fit we can 
also obtain an estimate of the quantity F(d/a) as a function of the separation between 
the bubbles. These results are shown in figure 3 by the solid lines which refer to different 
values of Re. At the higher separations and Reynolds numbers the curves converge, 
which supports an expression of the form (4.1) for the leading-order correction. 
Furthermore, the convergence of F to  a value very close to 2.2 with increasing Reynolds 
number and separation is in agreement with the single-bubble results. The dependence 
upon Re at small separations indicates that (4.1) is inapplicable in this range. It is 
interesting and perhaps rather disappointing to see in figure 2(a) that the dissipation 
result gives an error of the order of 20% even for Re = 200. 

A similar procedure applied to the results of figure 2(b) for the second bubble gives 
the results shown by the dashed lines in figure 3. Evidently, for the trailing bubble, a 
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FIGURE 4. Vorticity distribution in three planes perpendicular to the axis of symmetry according to 
the present computations for Re = 100 (long dashes), 200 (medium dashes), and 500 (short dashes) 
and Harper’s theory (solid lines, with Re decreasing from left to right). (a) The vorticity in a plane 
0.16 radii ahead of the trailing bubble’s front stagnation point, (b) in the plane of symmetry of the 
two bubbles, and (c) 0.16 radii behind the rear stagnation point of the leading bubble. 

much greater separation is needed before (4.1) becomes applicable. As the distance 
between the bubble increases further, F for the second bubble must evidently tend 
asymptotically to the single-bubble value 2.2. The figure suggests that this would only 
occur at very large separations indeed. These results are in quantitative disagreement 
with the analysis of Harper (1970), who gave a formula similar to (4.1) with F = 4.345. 
It seems that the difference arises due to the approximations that he introduced for the 
vorticity field. To substantiate this diagnosis we show in figure 4 the vorticity 
distribution in three planes normal to the symmetry axis for Re = 100, 200 and 500. 
Here the bubble centres are separated by 8 radii and the planes are, from right to left, 
0.16 units behind the rear stagnation point of the leading bubble, at the midpoint 
between the centres, and 0.16 units upstream of the front stagnation point of the 
trailing bubble. The solid lines are Harper’s vorticity distributions as obtained from his 
equation (3.8), and the broken lines are the present computed results. It is seen that, 
for Re = 500, Harper’s and the numerical results are fairly close, especially in the outer 
part of the wake. Closer to the axis of symmetry, however, Harper’s vorticity is 
considerably stronger than the present one owing to his inadequate resolution of the 
flow near the rear stagnation point. This error is much greater for Re = 100 and 200. 
Downstream of this region the numerical results indicate, even for Re = 500, a strong 
diffusion of vorticity that is completely neglected by Harper. The comparison seems to 
suggest that Harper’s and the present results approach each other as Re increases, but 
at a very slow rate. Thus it would seem unlikely that a realizable physical situation can 
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FIGURE 5. Streamlines of the relative flow in the rest frame of the bubbles at Re = 20 at a centre-to- 
centre separation of (a) 3 and (b)  8 radii. The stream function of the disturbance flow vanishes on the 
axis. Contours are separated by 0.4 dimensionless units. 

be found in which the Weber number is small enough for the bubbles to remain 
appreciably spherical and the Reynolds number large enough for Harper’s first-order 
boundary-layer theory to give accurate results. 

Another approximation scheme to estimate the drag on the trailing bubble could be 
to use the same drag coefficient as for the leading bubble but with a relative velocity 
diminished by the wake effect. For this approximation to be valid the wake of the 
leading bubble must have had time to diffuse by a distance of the order of one bubble 
radius, which requires a separation d / a  of the order of the Reynolds number. For these 
very large separations our numerical method is not very accurate but, on the other 
hand, since the correction to the drag obtained in this way is of the order of a/d,  its 
magnitude is expected to be very small. 

Figures 5 and 6 show the streamlines of the relative flow in the rest frame of the 
bubbles for Re = 20 and 200 at two separations, d/a = 3 and 8. For the higher-Re 
example of figure 6 the potential-flow streamlines are also shown, by the dashes, and 
figures 6(a)(ii) and 6(b)(ii) are enlargements of the flow near the spheres. The large 
difference between the viscous and inviscid flow fields even at this relatively high Re is 
in agreement with the drag results shown before. 

We now turn to the unsteady problem and consider the evolution of the flow and of 
the drag for the case in which the motion starts impulsively at t = 0 with unit 
dimensionless velocity. The initial condition is potential flow. 
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(4 

FIGURE 6. Streamlines of the relative flow in the rest frame of the bubbles at Re = 200 at a separation 
of 3 radii in (a) and 8 radii in (b). Panel (ii) shows detail of the flow near the bubbles. The dashed lines 
are the potential flow solution. The stream function of the disturbance flow vanishes on the axis. 
Contours are separated by 0.25 dimensionless units. 
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I 

FIGURE 7. Transient evolution of the iso-vorticity contours after the impulsive motion of two bubbles 
with Re = 100 and a centre-to-centre distance of 8 radii. From top to bottom the panels are at 
dimensionless times equal to 2,4, 6, 8, 10, 12 and 14. The outermost contour corresponds to w = 0.2 
and adjacent contours differ by 0.2 units. 

The first example is for a distance between bubble centres of 4 diameters with Re = 
100. Figure 7 shows the time evolution of the iso-vorticity contours. The require- 
ment of zero tangential stress causes vorticity to be generated at the bubble surfaces, 
after which it is convected downstream, forming a wake behind each bubble. Up to a 
dimensionless time t ,  = Vt /a  w 8, at which the wake of the first bubble reaches the 
second one, the vorticity fields around the two bubbles are almost the same. After 
t ,  = 8 the wake of the first bubble strongly influences the flow structure around the 
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FIGURE 8. Time history of the drag on the leading (solid line) and trailing bubble 
for the case of figure 7. 

second one but, owing to the dominance of convection, the leading bubble itself is little 
affected. 

The effect of this flow development on the drag forces on the bubbles can be followed 
in figure 8 which shows the product of the drag coeffiient C, and the Reynolds number 
as a function of time. As the flow initially is nearly potential and the bubbles are 
sufficiently far apart not to interact significantly other than through the wake, the 
initial value of C,Re is close to 48, in agreement with Chen's (1974) unsteady 
boundary-layer analysis of a single bubble. As the vorticity field develops, both drags 
rapidly decrease but remain nevertheless very close until the wake of the first bubble 
reaches the second one. At this point the drag in the trailing bubble falls sharply while 
that on the leading one remains essentially constant at C, Re x 37. Shortly thereafter 
the drag on the second bubble also stabilizes at a value C, Re z 33,  significantly lower 
than that on the first bubble. Since potential flow does not include history effects the 
time dependence of the drag forces shown in this figure cannot possibly be accounted 
for by the dissipation-function method. 

The time evolution is similar for other separations, but an interesting new feature 
appears at higher Reynolds numbers as shown in figures 9(a) and 9(b) where the drag 
history for the two bubbles is portrayed for several values of d. All the curves initially 
fall rather rapidly and reach a minimum or near-minimum close to t ,  = 2, after which 
they show a tendency to rise and then to fall again toward a steady value (that in the 
case of the trailing sphere is modified once the wake of the leading one reaches it). The 
qualitative similarity of the trends and the closeness of the timescales suggest that these 
features are not due to the interaction, but are characteristic of the flow about each 
bubble. A possible interpretation is the following. Right after the initiation of the 
motion, the flow is very nearly potential and the drag is only due to the skin friction. 
With time, a viscous boundary layer forms and thickens, the velocity gradients relax, 
and the drag falls. Simultaneously, however, the fluid near the rear stagnation point 
starts moving with the body and so the pressure, that was high there in the initial quasi- 
potential flow, starts falling. The consequence is a tendency for the drag to increase. 
This state of affairs, however, is a temporary one as the vorticity distribution continues 
to evolve in the wake and to affect, via the Biot-Savart law, the velocity at the surface 
of the body. In support of this interpretation we note that the part of the argument 
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Dimensionless time 

FIGURE 9. (a)  Time history of the drag on the leading bubble at Re = 200 and different centre-to- 
centre separations. The broken lines, in descending order, are for d /a  = 2.6, 3,4. The solid lines, in 
ascending order, are for d/a  = 5, 7 and 20. (b) As (a) but for the trailing bubble. The lines are, in 
ascending order, for d /a  = 2.6,3,4,5,7 and 20. Note the difference between (a) and (6) in the vertical 
scales. 

given to explain the drag rise is based on a Bernoulli effect that would be much smaller 
at lower Reynolds numbers, in agreement with the numerical results. Furthermore, the 
drag rise in the case of the smallest separation d / a  = 2.6 is very large, as one would 
expect from the fact that the fluid between the spheres must acquire nearly the spheres’ 
velocity in this case. The role of the wake development in the final adjustment of the 
drag is implied by the relatively long timescale over which it occurs. 

Under the action of an imposed force, if the drag coefficients on the two bubbles are 
different, their distance will also change with time. The previous results show that the 
steady drag on the trailing bubble is always less than that on the leading bubble. The 
reverse is true, however, for the potential interaction. To show these features 
quantitatively we present in figures 10(a) and 10(b) graphs of Re(C,, - CD2) (solid line) 
and Re(C,, - C,,) (dashed line). Here C, is the force coefficient for the potential flow 
component of the force, defined similarly to (2.23). Since this interaction leads to a 
repulsive force approximately inversely proportional to the fourth power of the 
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FIGURE 10. The solid line shows Re(C,,-C,,) as a function of the centre-to-centre distance. The 
dashed line is Re(C,,-C,,). The Reynolds number is 50 in (a) and 200 in (b). Note that the curves 
intersect at a point which corresponds to a stable separation between the bubbles. 

separation (Harper 1970), the order of the terms has been reversed. The interesting 
point about these results is that the two curves cross, which implies an equilibrium 
distance at which the total hydrodynamic forces on each bubble are equal. It is clear 
that this situation corresponds to a stable equilibrium with respect to displacements in 
the direction of the line of centres. Indeed, if the bubbles get closer, the potential 
repulsive interaction would dominate and push them apart again while, if the 
separation were to increase, the viscous drag on the trailing bubble would fall and it 
would tend to catch up with the leading one. The implications of this will be discussed 
in the next section. 

We show in figure 11 the computed equilibrium distances D, for Re = 50, 100, and 
200. The three results lie remarkably close to the straight line 

D, = 4.40log,,Re-4.38. (4 * 2) 

For Re = 20, D, is approximately 2.6 and is too small to be computed reliably by our 
method. 
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Re 
FIGURE 11. Equilibrium separation between two bubbles as a function of the Reynolds number. 

5. Buoyant rise of two bubbles 
We now describe some results for the more realistic case in which the external forces, 

rather than the velocities, are prescribed. The motion of the bubbles must now be 
found in such a way that the total instantaneous force on them vanishes according to 
(2.20). In this equation the prescribed non-hydrodynamic force Fa is taken as due to 
buoyancy, so that the flow field can be computed ignoring the body force. An 
equivalent alternative of course would be to set Fa = 0 and to retain the body force in 
the Navier-Stokes equations. 

As in the previous case, in defining the viscous force on the bubbles, the potential 
force must be identified and subtracted. For this purpose we use the results of Lamb 
(1932, art. 138) to write 

(5.1) 

dM V'V2+dl(Vl)"] = F1-F1 

dL dd 1 dM 
dd 

dt dd dd 

dt 
V'V2+-(V2)2 = F2-F2  

where F'.' are the buoyancy forces and Fis are defined by (2.22). L and it4 are added- 
mass coefficients depending on bubble radius and separation. When the spheres have the 
same radius and are well separated, a 4 d, they are given by (Lamb 1932, art. 98) 

+... , 1 3 3 [ [(d/a)2 - 113+ [(d/a)4 - 3(d/a)2 + l]* 
L=$rpa3 1+ 

= 2npa3(;1) a 3  [l +[(d/a)2-2]a+[(d/a)4-4(d/a)2+3]3 1 1 +...I. (5.3) 

In the present calculations the minimum value of d/a is 2.6 and the last terms retained 
in these expressions are smaller than 2 x The characteristic velocity used in the 
present problem is the velocity of rise of a pair of bubbles at the equilibrium distance 
found at the end of the previous section. 

Since the viscous force acting on the bubbles depends on their velocity and 
separation, and since these quantities are themselves to be determined at each time 
step, the equations of motion (5.1) are implicit. To solve them we first discretize the 
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Dimensionless time 

FIGURE 12. History of (a) the individual velocities, (solid line, leading bubble, dashed line, trailing 
bubble), (b) relative velocity, and (c) centre-to-centre separation, for two bubbles ascending under the 
action of a fixed force. The initial centre-to-centre separation is 3 radii and the Reynolds number 50. 
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FIGURE 13. As figure 12 but the initial centre-to-centre separation is 5 radii 
and the Reynolds number 200. 
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FIGURE 14. As figure 12 but the initial centre-to-centre separation is 8 radii 
and the Reynolds number 200. 
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time derivatives by the backward Euler scheme. Given then an initial guess for the 
bubbles’ velocity and position, the flow field is determined and the viscous forces 
calculated by using the method of the previous section. The equation of motion (5.1) 
is then integrated to get a new estimate of velocities and positions, and so on to 
convergence. The convergence rate chiefly depends on the time step. For the typical 
value At = 0.1 approximately 5 iterations are required for a tolerance of lop6. 

We show some examples in figures 12-14. To interpret these results it is necessary to 
recall from the last section the fact that, at any Reynolds number, a separation exists 
at which the mutual forces between the bubbles balance. Hence it is expected that, 
whatever the initial separation between the bubbles, their distance will eventually reach 
the equilibrium value such that the forces on them are equal and they rise at the same 
velocity. This behaviour is indeed encountered in the calculations. For Re = 50 the 
equilibrium separation is approximately d/a w 3.10. Figures 12 and 13 show the 
velocity and separation histories for two bubbles separated initially by d/a = 3 and 8 
for Re = 50. In the first case, initially, the trailing bubble is subject only to the potential 
force and its velocity is smaller than that of the leading bubble. When the leading wake 
develops, however, the drag falls and the velocity overshoots that of the leading 
bubble. The separation decreases until the repulsive force dominates and pushes the 
trailing bubble back to its equilibrium distance. A similar behaviour can be seen in 
figure 14, for Re = 200 and d/a = 5 .  The equilibrium distance is in this case d/a w 5.75. 

6. Conclusions 
The present results have revealed that very strong viscous effects influence the 

interaction of two bubbles moving in the direction of their line of centres. The available 
high-Reynolds-number limiting results are very inaccurate even at Re = 200. At still 
larger values of Re, the Weber number increases and the assumption of sphericity 
becomes unjustified. These circumstances render the asymptotic study of Harper (1970) 
of bubbles rising in line of little relevance for the situations considered here and, 
presumably, for most of those encountered in practice as well. 

The transport and diffusion of vorticity affects very strongly the interaction between 
the bubbles, introducing history effects that cannot possibly be simulated from the 
dissipation function based on potential flow as in (1.1). The implications of this 
conclusion for the simulation of bubbly liquids along the lines of several recent papers 
(Sangani & Didwania 1993a, b ;  Kumaran & Koch 1993a, b;  van Wijngaarden 1993) 
are unclear. We have studied here the configuration that maximizes the viscous 
interaction. In view of the relatively small extent of the viscous region, (1.1) is expected 
to do a much better job at describing viscous forces in most other configurations. If, 
as argued by Kumaran & Koch (1993a), the effect of the lift force is such as to repel 
a bubble away from the wake of another bubble, one would conclude that the situation 
studied here occurs with very low probability and therefore the error incurred in 
modelling it incorrectly is small. On the other hand, Kumaran & Kochs argument is 
itself based on a high-Re picture that, as we have shown, can be misleading. In 
addition, our results do remind us that Moore’s (1963) correction (4.1) to the Levich 
force (1.3) is relatively large even at Re = 200, so that the use of (1.3) or (1.1) even when 
there is no wake interaction may be inaccurate. While this fact would not presumably 
affect the qualitative results of the bubbly liquid simulations mentioned before, it might 
nevertheless have an impact, for example, on the speed of kinematic waves. 

In agreement with Harper (1970), our calculations show that two bubbles rising in 
line under buoyancy will reach an equilibrium distance at which the wake effect and the 
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inertial repulsion balance. This fact is in marked contrast to recent experiments (Katz 
& Meneveau 1993), in which the bubbles have invariably been found to catch up with 
each other and collide. We believe that the most likely explanation of this discrepancy 
is to be found in the shape deformations induced by the flow which are different for 
the two bubbles. A numerical study of this effect along the lines of Ryskin & Leal 
(1984a, b) is currently under way. 

The authors express their gratitude to Professor Ashok Sangani for drawing their 
attention to this problem. This study has been supported by DOE under grant DE- 
FG02-89ER14043 and by NSF under grant CTS-8918144. 

Appendix 

discretizations used in $3. 

coordinates and multiplying by cz sin2 7 we find the form (2.14) with 

We provide here explicit expressions for the operators introduced in 52 and their 

After expressing the differential equation for the vector potential (2.1 1) in bispherical 

$ [2 cash ( 2 , ~ ~  ,u) (COS 27 - 1) + 4 C O S ~  (po P) (COS 7 - cos 37) 

+cos 47 + 2cos 27 - 31 to:; 7-+- ;;) 

+ ~ [ C O S ~  (2p0 P) - 4 cash b o p )  cos 11 + cos 27 + 21 $. (A 1) 
In a similar way, starting from the vorticity equation (2.12), multiplying it by 

:Re ca sin2 7, we find the form (2.15) with 

au % u = { [c sinh (po p) - ycosh ( ,U~,U)]  (COS 11 - cos 37) + 2[ - x + , 4  (COS 27 - 1)) - 
PO aP 

+ c[i.cosh (p,p)-XsSinh (pop)] (3 sin 7 - sin 37) -, (A 2) 1; 

-; cos 47 - cos 27 + $1 - - - -- (it;; ::;) 
1 

PO 
+ - [cash (2po y) sin 27 - cosh (pop) sin 37 - 5 cosh (po p) sin 11 + 3 sin 271 

X (+g + "Z) . 



After applying centred differences in p, the matrices appearing in (3.4), (3.5) are 
readily obtained in the form 

L:,,~,  = [2 cash (2p0 P) (4,1 - m + 4 cash ol0 A M,, - 4 , ~  + G, + w,, - 34,~ 
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where all the p-dependent terms are evaluated at the ith node, and the convolution 
term N:zl in (3.5) is equation (A 8) evaluated at the same node. The 8 in these 
equations are the Kronecker symbols. 

In calculating the pressure using (2.21), the following relations are useful to find uo 
and ao/h:  

2ca sin 8 
7 lp=-l , l  = arctan (acos 8 T + a2 sin2 8- c2’ 

u,Qd cos 7 - 1) ~f: up c sin 7 up( 1 -4dcos 7) & u, c sin 7 cos 8- sin 0, - 
id-cosq ~ d - c o s ~  uo lp=-l, 1 - 

The explicit expression for the tangential stress boundary condition (2.17) is given 
by 

2c2(coshy0 -cos 7) o l p = - l ,  = f (2 sinh yo cos 27 

-4 sinh 2p0 cos 7 + sinh 3p0 + 3 sinhpo)-- ~ V ~ ~ ~ ( c o s h 2 p ~  - 1) sin 7. (A 15) 

Upon taking scalar products with the set of sine functions one finds the following 
algebraic system : 

aP 

N 

2c2 c (coshiuo 4 k Z  -4d 6 k  lp--l, 1 
k-1 

N 
= f I: [2 sinh yo & - 4 sinh2po 4kl + (sinh 3y0 + 3 sinhp0) 2 

B=1 :: lp--l,l  
- ~ ~ c V ~ ” ( C O S ~  2p,- 1) h’l,l. (A 16) 
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